.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "build_tutorial/prompt.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_build_tutorial_prompt.py: .. _prompt-engineering: Prompt 格式化 ================================ 智能体应用中,重要的一点是构建符合模型 API 要求的输入(prompt)。AgentScope 中,我们为开 发者提供了一些列的内置策略,以支持不同的模型 API 和场景(chat 和 multi-agent)。 AgentScope 支持特定模型的 prompt 格式化,也支持模型未知的格式化。 .. tip:: **Chat 场景** 只涉及到 user 和 assistant 两个角色;而 **multi-agent** 场景会涉及到多个智能体,它们的角色(role)虽然都是 assistant,但是指向不同的实体。 .. note:: 目前,多数的大语言模型 API 服务只支持 chat 场景。例如,对话只涉及到两个角色 (user 和 assistant),部分 API 还要求它们必须交替发送消息。 .. note:: 目前还没有一种提示工程可以做到一劳永逸。AgentScope 内置提示构建策略的目标 是让初学者可以顺利调用模型 API,而不是达到最佳性能。 对于高级用户,我们建议开发人员根据需求和模型 API 要求来自定义提示构建策略。 模型未知的格式化 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 当我们需要应用能够在不同的模型 API 上都能运行的时候,我们需要进行模型未知的 prompt 格式化。 AgentScope 通过支持从配置中加载模型,并在 model wrapper 类中内置了一系列不同的格式化策略 来实现模型未知的格式化。同时支持 chat 和 multi-agent 场景。 开发者可以直接使用 model wrapper 对象的 `format` 方法来格式化输入消息,而无需了解模型 API 的细节。以 DashScope Chat API 为例: .. GENERATED FROM PYTHON SOURCE LINES 35-67 .. code-block:: Python from typing import Union, Optional from agentscope.agents import AgentBase from agentscope.message import Msg from agentscope.manager import ModelManager import agentscope import json # Load the model configuration agentscope.init( model_configs={ "config_name": "my_qwen", "model_type": "dashscope_chat", "model_name": "qwen-max", }, ) # 从 ModelManager 中获取模型对象 model = ModelManager.get_instance().get_model_by_config_name("my_qwen") # 可以将 `Msg` 对象或 `Msg` 对象列表传递给 `format` 方法 prompt = model.format( Msg("system", "You're a helpful assistant.", "system"), [ Msg("assistant", "Hi!", "assistant"), Msg("user", "Nice to meet you!", "user"), ], multi_agent_mode=False, ) print(json.dumps(prompt, indent=4, ensure_ascii=False)) .. rst-class:: sphx-glr-script-out .. code-block:: none [ { "role": "system", "content": [ { "text": "You're a helpful assistant." } ] }, { "role": "assistant", "content": [ { "text": "Hi!" } ] }, { "role": "user", "content": [ { "text": "Nice to meet you!" } ] } ] .. GENERATED FROM PYTHON SOURCE LINES 68-70 格式化输入消息后,我们可以将其传给 `model` 对象,进行实际的 API 调用。 .. GENERATED FROM PYTHON SOURCE LINES 70-75 .. code-block:: Python response = model(prompt) print(response.text) .. rst-class:: sphx-glr-script-out .. code-block:: none Nice to meet you too! How can I assist you today? .. GENERATED FROM PYTHON SOURCE LINES 76-77 同样,我们可以通过设置 `multi_agent_mode=True` 在 multi-agent 场景下格式化消息。 .. GENERATED FROM PYTHON SOURCE LINES 77-89 .. code-block:: Python prompt = model.format( Msg("system", "你是一个名为Alice的AI助手,你会与其他人进行交流", "system"), [ Msg("Alice", "Hi!", "assistant"), Msg("Bob", "Nice to meet you!", "assistant"), ], multi_agent_mode=True, ) print(json.dumps(prompt, indent=4, ensure_ascii=False)) .. rst-class:: sphx-glr-script-out .. code-block:: none [ { "role": "system", "content": [ { "text": "你是一个名为Alice的AI助手,你会与其他人进行交流" } ] }, { "role": "user", "content": [ { "text": "## Conversation History\nAlice: Hi!\nBob: Nice to meet you!" } ] } ] .. GENERATED FROM PYTHON SOURCE LINES 90-91 在 AgentScope 的智能体类中,模型未知的格式化实现如下: .. GENERATED FROM PYTHON SOURCE LINES 91-114 .. code-block:: Python class MyAgent(AgentBase): def __init__(self, name: str, model_config_name: str, **kwargs) -> None: super().__init__(name=name, model_config_name=model_config_name) # ... def reply(self, x: Optional[Union[Msg, list[Msg]]] = None) -> Msg: # ... # 在模型类型未知的情况下,可以直接进行格式化 prompt = self.model.format( Msg("system", "{your system prompt}", "system"), self.memory.get_memory(), multi_agent_mode=True, ) response = self.model(prompt) # ... return Msg(self.name, response.text, role="assistant") .. GENERATED FROM PYTHON SOURCE LINES 115-117 .. tip:: Model wrapper 类的格式化功能全部实现在 `agentscope.formatter` 模块中。 Model wrapper 类会根据模型名字来决定使用哪一种格式化策略。 .. GENERATED FROM PYTHON SOURCE LINES 119-126 模型已知的格式化 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ `agentscope.formatter` 模块中实现了一系列的格式化策略,以支持不同的模型 API 和场景。 具体而言,开发者可以调用 `format_chat` 和 `format_multi_agent` 方法来格式化 chat 和 multi-agent 场景下的消息。同时,还提供了一个 `format_auto` 方法,他会自动根据输入 消息中涉及到的角色实体数量来决定使用哪种格式化策略。 .. GENERATED FROM PYTHON SOURCE LINES 126-144 .. code-block:: Python from agentscope.formatters import OpenAIFormatter multi_agent_messages = [ Msg("system", "You're a helpful assistant named Alice.", "system"), Msg("Alice", "Hi!", "assistant"), Msg("Bob", "Nice to meet you!", "assistant"), Msg("Charlie", "Nice to meet you, too!", "user"), ] chat_messages = [ Msg("system", "You're a helpful assistant named Alice.", "system"), Msg("Bob", "Nice to meet you!", "user"), Msg("Alice", "Hi! How can I help you?", "assistant"), ] .. GENERATED FROM PYTHON SOURCE LINES 145-146 Multi-agent 场景: .. GENERATED FROM PYTHON SOURCE LINES 146-152 .. code-block:: Python formatted_multi_agent = OpenAIFormatter.format_multi_agent( multi_agent_messages, ) print(json.dumps(formatted_multi_agent, indent=4, ensure_ascii=False)) .. rst-class:: sphx-glr-script-out .. code-block:: none [ { "role": "system", "name": "system", "content": [ { "type": "text", "text": "You're a helpful assistant named Alice." } ] }, { "role": "assistant", "name": "Alice", "content": [ { "type": "text", "text": "Hi!" } ] }, { "role": "assistant", "name": "Bob", "content": [ { "type": "text", "text": "Nice to meet you!" } ] }, { "role": "user", "name": "Charlie", "content": [ { "type": "text", "text": "Nice to meet you, too!" } ] } ] .. GENERATED FROM PYTHON SOURCE LINES 153-154 Chat 场景: .. GENERATED FROM PYTHON SOURCE LINES 154-160 .. code-block:: Python formatted_chat = OpenAIFormatter.format_chat( chat_messages, ) print(json.dumps(formatted_chat, indent=4, ensure_ascii=False)) .. rst-class:: sphx-glr-script-out .. code-block:: none [ { "role": "system", "name": "system", "content": [ { "type": "text", "text": "You're a helpful assistant named Alice." } ] }, { "role": "user", "name": "Bob", "content": [ { "type": "text", "text": "Nice to meet you!" } ] }, { "role": "assistant", "name": "Alice", "content": [ { "type": "text", "text": "Hi! How can I help you?" } ] } ] .. GENERATED FROM PYTHON SOURCE LINES 161-162 自动格式化(输入中只包含 user 和 assistant 两个实体): .. GENERATED FROM PYTHON SOURCE LINES 162-168 .. code-block:: Python formatted_auto_chat = OpenAIFormatter.format_auto( chat_messages, ) print(json.dumps(formatted_auto_chat, indent=4, ensure_ascii=False)) .. rst-class:: sphx-glr-script-out .. code-block:: none [ { "role": "system", "name": "system", "content": [ { "type": "text", "text": "You're a helpful assistant named Alice." } ] }, { "role": "user", "name": "Bob", "content": [ { "type": "text", "text": "Nice to meet you!" } ] }, { "role": "assistant", "name": "Alice", "content": [ { "type": "text", "text": "Hi! How can I help you?" } ] } ] .. GENERATED FROM PYTHON SOURCE LINES 169-170 自动格式化(输入中包含多个实体,即 multi-agent): .. GENERATED FROM PYTHON SOURCE LINES 170-176 .. code-block:: Python formatted_auto_multi_agent = OpenAIFormatter.format_auto( multi_agent_messages, ) print(json.dumps(formatted_auto_multi_agent, indent=4, ensure_ascii=False)) .. rst-class:: sphx-glr-script-out .. code-block:: none [ { "role": "system", "name": "system", "content": [ { "type": "text", "text": "You're a helpful assistant named Alice." } ] }, { "role": "assistant", "name": "Alice", "content": [ { "type": "text", "text": "Hi!" } ] }, { "role": "assistant", "name": "Bob", "content": [ { "type": "text", "text": "Nice to meet you!" } ] }, { "role": "user", "name": "Charlie", "content": [ { "type": "text", "text": "Nice to meet you, too!" } ] } ] .. GENERATED FROM PYTHON SOURCE LINES 177-178 AgentScope 中可用的 formatter 类如下: .. GENERATED FROM PYTHON SOURCE LINES 178-188 .. code-block:: Python from agentscope.formatters import ( CommonFormatter, AnthropicFormatter, OpenAIFormatter, GeminiFormatter, DashScopeFormatter, ) .. GENERATED FROM PYTHON SOURCE LINES 189-197 `CommonFormatter` 是用于一般 chat LLMs 的基本格式化器, 例如 ZhipuAI API、Yi API、ollama、LiteLLM 等。 视觉模型 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 对于视觉模型,AgentScope 目前支持 OpenAI,Dashscope 和 Anthropic API。 .. GENERATED FROM PYTHON SOURCE LINES 197-218 .. code-block:: Python from agentscope.message import TextBlock, ImageBlock # we create a fake image locally with open("./image.jpg", "w") as f: f.write("fake image") multi_modal_messages = [ Msg("system", "You're a helpful assistant named Alice.", "system"), Msg( "Alice", [ TextBlock(type="text", text="Help me to describe the two images?"), ImageBlock(type="image", url="https://example.com/image.jpg"), ImageBlock(type="image", url="./image.jpg"), ], "user", ), Msg("Bob", "Sure!", "assistant"), ] .. GENERATED FROM PYTHON SOURCE LINES 219-223 .. code-block:: Python print("OpenAI prompt:") openai_prompt = OpenAIFormatter.format_chat(multi_modal_messages) print(json.dumps(openai_prompt, indent=4, ensure_ascii=False)) .. rst-class:: sphx-glr-script-out .. code-block:: none OpenAI prompt: [ { "role": "system", "name": "system", "content": [ { "type": "text", "text": "You're a helpful assistant named Alice." } ] }, { "role": "user", "name": "Alice", "content": [ { "type": "text", "text": "Help me to describe the two images?" }, { "type": "image_url", "image_url": { "url": "https://example.com/image.jpg" } }, { "type": "image_url", "image_url": { "url": "" } } ] }, { "role": "assistant", "name": "Bob", "content": [ { "type": "text", "text": "Sure!" } ] } ] .. GENERATED FROM PYTHON SOURCE LINES 225-229 .. code-block:: Python print("\nDashscope prompt:") dashscope_prompt = DashScopeFormatter.format_chat(multi_modal_messages) print(json.dumps(dashscope_prompt, indent=4, ensure_ascii=False)) .. rst-class:: sphx-glr-script-out .. code-block:: none Dashscope prompt: [ { "role": "system", "content": [ { "text": "You're a helpful assistant named Alice." } ] }, { "role": "user", "content": [ { "text": "Help me to describe the two images?" }, { "image": "https://example.com/image.jpg" }, { "image": "./image.jpg" } ] }, { "role": "assistant", "content": [ { "text": "Sure!" } ] } ] .. GENERATED FROM PYTHON SOURCE LINES 231-234 .. code-block:: Python print("\nAnthropic prompt:") anthropic_prompt = AnthropicFormatter.format_chat(multi_modal_messages) print(json.dumps(anthropic_prompt, indent=4, ensure_ascii=False)) .. rst-class:: sphx-glr-script-out .. code-block:: none Anthropic prompt: [ { "role": "system", "content": [ { "type": "text", "text": "You're a helpful assistant named Alice." } ] }, { "role": "user", "content": [ { "type": "text", "text": "Help me to describe the two images?" }, { "type": "image", "source": "https://example.com/image.jpg" }, { "type": "image", "source": { "type": "base64", "media_type": "image/jpeg", "data": "" } } ] }, { "role": "assistant", "content": [ { "type": "text", "text": "Sure!" } ] } ] .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 1.342 seconds) .. _sphx_glr_download_build_tutorial_prompt.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: prompt.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: prompt.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: prompt.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_