agentscope.rag.llama_index_knowledge 源代码

# -*- coding: utf-8 -*-
"""
This module is an integration of the Llama index RAG
into AgentScope package
"""

import os.path
from typing import Any, Optional, List, Union
from loguru import logger

try:
    import llama_index
    from llama_index.core.base.base_retriever import BaseRetriever
    from llama_index.core.base.embeddings.base import (
        BaseEmbedding,
        Embedding,
    )
    from llama_index.core.ingestion import IngestionPipeline

    from llama_index.core.bridge.pydantic import PrivateAttr
    from llama_index.core.node_parser import SentenceSplitter
    from llama_index.core import (
        VectorStoreIndex,
        StorageContext,
        load_index_from_storage,
    )
    from llama_index.core.schema import (
        Document,
        TransformComponent,
    )
except ImportError:
    llama_index = None
    BaseRetriever = None
    BaseEmbedding = None
    Embedding = None
    IngestionPipeline = None
    SentenceSplitter = None
    VectorStoreIndex = None
    StorageContext = None
    load_index_from_storage = None
    PrivateAttr = None
    Document = None
    TransformComponent = None

from agentscope.manager import FileManager
from agentscope.models import ModelWrapperBase
from agentscope.constants import (
    DEFAULT_TOP_K,
    DEFAULT_CHUNK_SIZE,
    DEFAULT_CHUNK_OVERLAP,
)
from agentscope.rag.knowledge import Knowledge


try:

    class _EmbeddingModel(BaseEmbedding):
        """
        wrapper for ModelWrapperBase to an embedding model can be used
        in Llama Index pipeline.
        """

        _emb_model_wrapper: ModelWrapperBase = PrivateAttr()

        def __init__(
            self,
            emb_model: ModelWrapperBase,
            embed_batch_size: int = 1,
        ) -> None:
            """
            Dummy wrapper to convert a ModelWrapperBase to llama Index
            embedding model

            Args:
                emb_model (ModelWrapperBase):
                    embedding model in ModelWrapperBase
                embed_batch_size (int):
                    batch size, defaults to 1
            """
            super().__init__(
                model_name="Temporary_embedding_wrapper",
                embed_batch_size=embed_batch_size,
            )
            self._emb_model_wrapper = emb_model

        def _get_query_embedding(self, query: str) -> List[float]:
            """
            get embedding for query
            Args:
                query (str): query to be embedded
            """
            # Note: AgentScope embedding model wrapper returns list
            # of embedding
            return list(self._emb_model_wrapper(query).embedding[0])

        def _get_text_embeddings(self, texts: List[str]) -> List[Embedding]:
            """
            get embedding for list of strings
            Args:
                 texts ( List[str]): texts to be embedded
            """
            results = [
                list(self._emb_model_wrapper(t).embedding[0]) for t in texts
            ]
            return results

        def _get_text_embedding(self, text: str) -> Embedding:
            """
            get embedding for a single string
            Args:
                 text (str): texts to be embedded
            """
            return list(self._emb_model_wrapper(text).embedding[0])

        # TODO: use proper async methods, but depends on model wrapper
        async def _aget_query_embedding(self, query: str) -> List[float]:
            """The asynchronous version of _get_query_embedding."""
            return self._get_query_embedding(query)

        async def _aget_text_embedding(self, text: str) -> List[float]:
            """Asynchronously get text embedding."""
            return self._get_text_embedding(text)

        async def _aget_text_embeddings(
            self,
            texts: List[str],
        ) -> List[List[float]]:
            """Asynchronously get text embeddings."""
            return self._get_text_embeddings(texts)

except Exception:

    class _EmbeddingModel:  # type: ignore[no-redef]
        """
        A dummy embedding model for passing tests when
        llama-index is not install
        """

        def __init__(self, emb_model: ModelWrapperBase):
            self._emb_model_wrapper = emb_model


[文档] class LlamaIndexKnowledge(Knowledge): """ This class is a wrapper with the llama index RAG. """
[文档] def __init__( self, knowledge_id: str, emb_model: Union[ModelWrapperBase, BaseEmbedding, None] = None, knowledge_config: Optional[dict] = None, model: Optional[ModelWrapperBase] = None, persist_root: Optional[str] = None, overwrite_index: Optional[bool] = False, showprogress: Optional[bool] = True, **kwargs: Any, ) -> None: """ initialize the knowledge component based on the llama-index framework: https://github.com/run-llama/llama_index Notes: In LlamaIndex, one of the most important concepts is index, which is a data structure composed of Document objects, designed to enable querying by an LLM. The core workflow of initializing RAG is to convert data to index, and retrieve information from index. For example: 1) preprocessing documents with data loaders 2) generate embedding by configuring pipline with embedding models 3) store the embedding-content to vector database the default dir is "./rag_storage/knowledge_id" Args: knowledge_id (str): The id of the RAG knowledge unit. emb_model (ModelWrapperBase): The embedding model used for generate embeddings knowledge_config (dict): The configuration for llama-index to generate or load the index. model (ModelWrapperBase): The language model used for final synthesis persist_root (str): The root directory for index persisting overwrite_index (Optional[bool]): Whether to overwrite the index while refreshing showprogress (Optional[bool]): Whether to show the indexing progress """ super().__init__( knowledge_id=knowledge_id, emb_model=emb_model, knowledge_config=knowledge_config, model=model, **kwargs, ) if llama_index is None: raise ImportError( "LlamaIndexKnowledge require llama-index installed. " "Try a stable llama-index version, such as " "`pip install llama-index==0.10.30`", ) if persist_root is None: persist_root = FileManager.get_instance().run_dir or "./" self.persist_dir = os.path.join(persist_root, knowledge_id) self.emb_model = emb_model self.overwrite_index = overwrite_index self.showprogress = showprogress self.index = None # ensure the emb_model is compatible with LlamaIndex if isinstance(emb_model, ModelWrapperBase): self.emb_model = _EmbeddingModel(emb_model) elif isinstance(self.emb_model, BaseEmbedding): pass else: raise TypeError( f"Embedding model does not support {type(self.emb_model)}.", ) # then we can initialize the RAG self._init_rag()
def _init_rag(self, **kwargs: Any) -> None: """ Initialize the RAG. This includes: * if the persist_dir exists, load the persisted index * if not, convert the data to index * if needed, update the index * set the retriever to retrieve information from index Notes: * the index is persisted in the self.persist_dir * the refresh_index method is placed here for testing, it can be called externally. For example, updated the index periodically by calling rag.refresh_index() during the execution of the agent. """ if os.path.exists(self.persist_dir): self._load_index() # self.refresh_index() else: self._data_to_index() self._get_retriever() logger.info( f"RAG with knowledge ids: {self.knowledge_id} " f"initialization completed!\n", ) def _load_index(self) -> None: """ Load the persisted index from persist_dir. """ # load the storage_context storage_context = StorageContext.from_defaults( persist_dir=self.persist_dir, ) # construct index from self.index = load_index_from_storage( storage_context=storage_context, embed_model=self.emb_model, ) logger.info(f"index loaded from {self.persist_dir}") def _data_to_index(self) -> None: """ Convert the data to index by configs. This includes: * load the data to documents by using information from configs * set the transformations associated with documents * convert the documents to nodes * convert the nodes to index Notes: As each selected file type may need to use a different loader and transformations, knowledge_config is a list of configs. """ nodes = [] # load data to documents and set transformations # using information in knowledge_config for config in self.knowledge_config.get("data_processing"): documents = self._data_to_docs(config=config) transformations = self._set_transformations(config=config).get( "transformations", ) nodes_docs = self._docs_to_nodes( documents=documents, transformations=transformations, ) nodes = nodes + nodes_docs # convert nodes to index self.index = VectorStoreIndex( nodes=nodes, embed_model=self.emb_model, ) logger.info("index calculation completed.") # persist the calculated index self.index.storage_context.persist(persist_dir=self.persist_dir) logger.info("index persisted.") def _data_to_docs( self, query: Optional[str] = None, config: dict = None, ) -> Any: """ This method set the loader as needed, or just use the default setting. Then use the loader to load data from dir to documents. Notes: We can use simple directory loader (SimpleDirectoryReader) to load general documents, including Markdown, PDFs, Word documents, PowerPoint decks, images, audio and video. Or use SQL loader (DatabaseReader) to load database. Args: query (Optional[str]): optional, used when the data is in a database. config (dict): optional, used when the loader config is in a config file. Returns: Any: loaded documents """ loader = self._set_loader(config=config).get("loader") # let the doc_id be the filename for each document loader.filename_as_id = True if query is None: documents = loader.load_data() else: # this is for querying a database, # does not work for loading a document directory documents = loader.load_data(query) logger.info(f"loaded {len(documents)} documents") return documents def _docs_to_nodes( self, documents: List[Document], transformations: Optional[list[Optional[TransformComponent]]] = None, ) -> Any: """ Convert the loaded documents to nodes using transformations. Args: documents (List[Document]): documents to be processed, usually expected to be in llama index Documents. transformations (Optional[list[TransformComponent]]): optional, specifies the transformations (operators) to process documents (e.g., split the documents into smaller chunks) Return: Any: return the index of the processed document """ # nodes, or called chunks, is a presentation of the documents # we build nodes by using the IngestionPipeline # for each document with corresponding transformations pipeline = IngestionPipeline( transformations=transformations, ) # stack up the nodes from the pipline nodes = pipeline.run( documents=documents, show_progress=self.showprogress, ) logger.info("nodes generated.") return nodes def _set_loader(self, config: dict) -> Any: """ Set the loader as needed, or just use the default setting. Args: config (dict): a dictionary containing configurations """ if "load_data" in config: # we prepare the loader from the configs loader = self._prepare_args_from_config( config=config.get("load_data", {}), ) else: # we prepare the loader by default try: from llama_index.core import SimpleDirectoryReader except ImportError as exc_inner: raise ImportError( " LlamaIndexAgent requires llama-index to be install." "Please run `pip install llama-index`", ) from exc_inner loader = { "loader": SimpleDirectoryReader( input_dir="set_default_data_path", ), } logger.info("loaders are ready.") return loader def _set_transformations(self, config: dict) -> Any: """ Set the transformations as needed, or just use the default setting. Args: config (dict): a dictionary containing configurations. """ if "store_and_index" in config: temp = self._prepare_args_from_config( config=config.get("store_and_index", {}), ) transformations = temp.get("transformations") else: transformations = [ SentenceSplitter( chunk_size=self.knowledge_config.get( "chunk_size", DEFAULT_CHUNK_SIZE, ), chunk_overlap=self.knowledge_config.get( "chunk_overlap", DEFAULT_CHUNK_OVERLAP, ), ), ] # adding embedding model as the last step of transformation # https://docs.llamaindex.ai/en/stable/module_guides/loading/ingestion_pipeline/root.html transformations.append(self.emb_model) logger.info("transformations are ready.") # as the last step, we need to repackage the transformations in dict transformations = {"transformations": transformations} return transformations def _get_retriever( self, similarity_top_k: int = None, **kwargs: Any, ) -> BaseRetriever: """ Set the retriever as needed, or just use the default setting. Args: retriever (Optional[BaseRetriever]): passing a retriever in LlamaIndexKnowledge rag_config (dict): rag configuration, including similarity top k index. """ # set the retriever logger.info( f"similarity_top_k" f"={similarity_top_k or DEFAULT_TOP_K}", ) retriever = self.index.as_retriever( embed_model=self.emb_model, similarity_top_k=similarity_top_k or DEFAULT_TOP_K, **kwargs, ) logger.info("retriever is ready.") return retriever
[文档] def retrieve( self, query: str, similarity_top_k: int = None, to_list_strs: bool = False, retriever: Optional[BaseRetriever] = None, **kwargs: Any, ) -> list[Any]: """ This is a basic retrieve function for knowledge. It will build a retriever on the fly and return the result of the query. Args: query (str): query is expected to be a question in string similarity_top_k (int): the number of most similar data returned by the retriever. to_list_strs (bool): whether returns the list of strings; if False, return NodeWithScore retriever (BaseRetriever): for advanced usage, user can pass their own retriever. Return: list[Any]: list of str or NodeWithScore More advanced query processing can refer to https://docs.llamaindex.ai/en/stable/examples/query_transformations/query_transform_cookbook.html """ if retriever is None: retriever = self._get_retriever(similarity_top_k) retrieved = retriever.retrieve(str(query)) if to_list_strs: results = [] for node in retrieved: results.append(node.get_text()) return results return retrieved
[文档] def refresh_index(self) -> None: """ Refresh the index when needed. """ for config in self.knowledge_config.get("data_processing"): documents = self._data_to_docs(config=config) # store and indexing for each file type transformations = self._set_transformations(config=config).get( "transformations", ) self._insert_docs_to_index( documents=documents, transformations=transformations, )
def _insert_docs_to_index( self, documents: List[Document], transformations: TransformComponent, ) -> None: """ Add documents to the index. Given a list of documents, we first test if the doc_id is already in the index. If not, we add the doc to the list. If yes, and the over-write flag is enabled, we delete the old doc and add the new doc to the list. Lastly, we generate nodes for all documents on the list, and insert the nodes to the index. Args: documents (List[Document]): list of documents to be added. transformations (TransformComponent): transformations that convert the documents into nodes. """ # this is the pipline that generate the nodes pipeline = IngestionPipeline( transformations=transformations, ) # we need to generate nodes from this list of documents insert_docs_list = [] for doc in documents: if doc.doc_id not in self.index.ref_doc_info.keys(): # if the doc_id is not in the index, we add it to the list insert_docs_list.append(doc) logger.info( f"add new documents to index, " f"doc_id={doc.doc_id}", ) else: if self.overwrite_index: # if we enable overwrite index, we delete the old doc self.index.delete_ref_doc( ref_doc_id=doc.doc_id, delete_from_docstore=True, ) # then add the same doc to the list insert_docs_list.append(doc) logger.info( f"replace document in index, " f"doc_id={doc.doc_id}", ) logger.info("documents scan completed.") # we generate nodes for documents on the list nodes = pipeline.run( documents=insert_docs_list, show_progress=True, ) logger.info("nodes generated.") # insert the new nodes to index self.index.insert_nodes(nodes=nodes) logger.info("nodes inserted to index.") # persist the updated index self.index.storage_context.persist(persist_dir=self.persist_dir) def _delete_docs_from_index( self, documents: List[Document], ) -> None: """ Delete the nodes that are associated with a list of documents. Args: documents (List[Document]): list of documents to be deleted. """ doc_id_list = [doc.doc_id for doc in documents] for key in self.index.ref_doc_info.keys(): if key in doc_id_list: self.index.delete_ref_doc( ref_doc_id=key, delete_from_docstore=True, ) logger.info(f"docs deleted from index, doc_id={key}") # persist the updated index self.index.storage_context.persist(persist_dir=self.persist_dir) logger.info("nodes delete completed.")