备注
Go to the end to download the full example code.
Prompt 格式化
智能体应用中,重要的一点是构建符合模型 API 要求的输入(prompt)。AgentScope 中,我们为开 发者提供了一些列的内置策略,以支持不同的模型 API 和场景(chat 和 multi-agent)。
AgentScope 支持特定模型的 prompt 格式化,也支持模型未知的格式化。
小技巧
Chat 场景 只涉及到 user 和 assistant 两个角色;而 multi-agent
场景会涉及到多个智能体,它们的角色(role)虽然都是 assistant,但是指向不同的实体。
备注
目前,多数的大语言模型 API 服务只支持 chat 场景。例如,对话只涉及到两个角色
(user 和 assistant),部分 API 还要求它们必须交替发送消息。
备注
目前还没有一种提示工程可以做到一劳永逸。AgentScope 内置提示构建策略的目标 是让初学者可以顺利调用模型 API,而不是达到最佳性能。 对于高级用户,我们建议开发人员根据需求和模型 API 要求来自定义提示构建策略。
模型未知的格式化
当我们需要应用能够在不同的模型 API 上都能运行的时候,我们需要进行模型未知的 prompt 格式化。
AgentScope 通过支持从配置中加载模型,并在 model wrapper 类中内置了一系列不同的格式化策略 来实现模型未知的格式化。同时支持 chat 和 multi-agent 场景。
- 开发者可以直接使用 model wrapper 对象的 format 方法来格式化输入消息,而无需了解模型
API 的细节。以 DashScope Chat API 为例:
from typing import Union, Optional
from agentscope.agents import AgentBase
from agentscope.message import Msg
from agentscope.manager import ModelManager
import agentscope
import json
# Load the model configuration
agentscope.init(
model_configs={
"config_name": "my_qwen",
"model_type": "dashscope_chat",
"model_name": "qwen-max",
},
)
# 从 ModelManager 中获取模型对象
model = ModelManager.get_instance().get_model_by_config_name("my_qwen")
# 可以将 `Msg` 对象或 `Msg` 对象列表传递给 `format` 方法
prompt = model.format(
Msg("system", "You're a helpful assistant.", "system"),
[
Msg("assistant", "Hi!", "assistant"),
Msg("user", "Nice to meet you!", "user"),
],
multi_agent_mode=False,
)
print(json.dumps(prompt, indent=4, ensure_ascii=False))
[
{
"role": "system",
"content": [
{
"text": "You're a helpful assistant."
}
]
},
{
"role": "assistant",
"content": [
{
"text": "Hi!"
}
]
},
{
"role": "user",
"content": [
{
"text": "Nice to meet you!"
}
]
}
]
格式化输入消息后,我们可以将其传给 model 对象,进行实际的 API 调用。
response = model(prompt)
print(response.text)
Nice to meet you too! How can I assist you today?
同样,我们可以通过设置 multi_agent_mode=True 在 multi-agent 场景下格式化消息。
prompt = model.format(
Msg("system", "你是一个名为Alice的AI助手,你会与其他人进行交流", "system"),
[
Msg("Alice", "Hi!", "assistant"),
Msg("Bob", "Nice to meet you!", "assistant"),
],
multi_agent_mode=True,
)
print(json.dumps(prompt, indent=4, ensure_ascii=False))
[
{
"role": "system",
"content": [
{
"text": "你是一个名为Alice的AI助手,你会与其他人进行交流"
}
]
},
{
"role": "user",
"content": [
{
"text": "## Conversation History\nAlice: Hi!\nBob: Nice to meet you!"
}
]
}
]
在 AgentScope 的智能体类中,模型未知的格式化实现如下:
class MyAgent(AgentBase):
def __init__(self, name: str, model_config_name: str, **kwargs) -> None:
super().__init__(name=name, model_config_name=model_config_name)
# ...
def reply(self, x: Optional[Union[Msg, list[Msg]]] = None) -> Msg:
# ...
# 在模型类型未知的情况下,可以直接进行格式化
prompt = self.model.format(
Msg("system", "{your system prompt}", "system"),
self.memory.get_memory(),
multi_agent_mode=True,
)
response = self.model(prompt)
# ...
return Msg(self.name, response.text, role="assistant")
小技巧
Model wrapper 类的格式化功能全部实现在 agentscope.formatter 模块中。
Model wrapper 类会根据模型名字来决定使用哪一种格式化策略。
模型已知的格式化
agentscope.formatter 模块中实现了一系列的格式化策略,以支持不同的模型 API 和场景。 具体而言,开发者可以调用 format_chat 和 format_multi_agent 方法来格式化 chat 和 multi-agent 场景下的消息。同时,还提供了一个 format_auto 方法,他会自动根据输入 消息中涉及到的角色实体数量来决定使用哪种格式化策略。
from agentscope.formatters import OpenAIFormatter
multi_agent_messages = [
Msg("system", "You're a helpful assistant named Alice.", "system"),
Msg("Alice", "Hi!", "assistant"),
Msg("Bob", "Nice to meet you!", "assistant"),
Msg("Charlie", "Nice to meet you, too!", "user"),
]
chat_messages = [
Msg("system", "You're a helpful assistant named Alice.", "system"),
Msg("Bob", "Nice to meet you!", "user"),
Msg("Alice", "Hi! How can I help you?", "assistant"),
]
Multi-agent 场景:
formatted_multi_agent = OpenAIFormatter.format_multi_agent(
multi_agent_messages,
)
print(json.dumps(formatted_multi_agent, indent=4, ensure_ascii=False))
[
{
"role": "system",
"name": "system",
"content": [
{
"type": "text",
"text": "You're a helpful assistant named Alice."
}
]
},
{
"role": "assistant",
"name": "Alice",
"content": [
{
"type": "text",
"text": "Hi!"
}
]
},
{
"role": "assistant",
"name": "Bob",
"content": [
{
"type": "text",
"text": "Nice to meet you!"
}
]
},
{
"role": "user",
"name": "Charlie",
"content": [
{
"type": "text",
"text": "Nice to meet you, too!"
}
]
}
]
Chat 场景:
formatted_chat = OpenAIFormatter.format_chat(
chat_messages,
)
print(json.dumps(formatted_chat, indent=4, ensure_ascii=False))
[
{
"role": "system",
"name": "system",
"content": [
{
"type": "text",
"text": "You're a helpful assistant named Alice."
}
]
},
{
"role": "user",
"name": "Bob",
"content": [
{
"type": "text",
"text": "Nice to meet you!"
}
]
},
{
"role": "assistant",
"name": "Alice",
"content": [
{
"type": "text",
"text": "Hi! How can I help you?"
}
]
}
]
自动格式化(输入中只包含 user 和 assistant 两个实体):
formatted_auto_chat = OpenAIFormatter.format_auto(
chat_messages,
)
print(json.dumps(formatted_auto_chat, indent=4, ensure_ascii=False))
[
{
"role": "system",
"name": "system",
"content": [
{
"type": "text",
"text": "You're a helpful assistant named Alice."
}
]
},
{
"role": "user",
"name": "Bob",
"content": [
{
"type": "text",
"text": "Nice to meet you!"
}
]
},
{
"role": "assistant",
"name": "Alice",
"content": [
{
"type": "text",
"text": "Hi! How can I help you?"
}
]
}
]
自动格式化(输入中包含多个实体,即 multi-agent):
formatted_auto_multi_agent = OpenAIFormatter.format_auto(
multi_agent_messages,
)
print(json.dumps(formatted_auto_multi_agent, indent=4, ensure_ascii=False))
[
{
"role": "system",
"name": "system",
"content": [
{
"type": "text",
"text": "You're a helpful assistant named Alice."
}
]
},
{
"role": "assistant",
"name": "Alice",
"content": [
{
"type": "text",
"text": "Hi!"
}
]
},
{
"role": "assistant",
"name": "Bob",
"content": [
{
"type": "text",
"text": "Nice to meet you!"
}
]
},
{
"role": "user",
"name": "Charlie",
"content": [
{
"type": "text",
"text": "Nice to meet you, too!"
}
]
}
]
AgentScope 中可用的 formatter 类如下:
from agentscope.formatters import (
CommonFormatter,
AnthropicFormatter,
OpenAIFormatter,
GeminiFormatter,
DashScopeFormatter,
)
CommonFormatter 是用于一般 chat LLMs 的基本格式化器, 例如 ZhipuAI API、Yi API、ollama、LiteLLM 等。
视觉模型
对于视觉模型,AgentScope 目前支持 OpenAI,Dashscope 和 Anthropic API。
from agentscope.message import TextBlock, ImageBlock
# we create a fake image locally
with open("./image.jpg", "w") as f:
f.write("fake image")
multi_modal_messages = [
Msg("system", "You're a helpful assistant named Alice.", "system"),
Msg(
"Alice",
[
TextBlock(type="text", text="Help me to describe the two images?"),
ImageBlock(type="image", url="https://example.com/image.jpg"),
ImageBlock(type="image", url="./image.jpg"),
],
"user",
),
Msg("Bob", "Sure!", "assistant"),
]
print("OpenAI prompt:")
openai_prompt = OpenAIFormatter.format_chat(multi_modal_messages)
print(json.dumps(openai_prompt, indent=4, ensure_ascii=False))
OpenAI prompt:
[
{
"role": "system",
"name": "system",
"content": [
{
"type": "text",
"text": "You're a helpful assistant named Alice."
}
]
},
{
"role": "user",
"name": "Alice",
"content": [
{
"type": "text",
"text": "Help me to describe the two images?"
},
{
"type": "image_url",
"image_url": {
"url": "https://example.com/image.jpg"
}
},
{
"type": "image_url",
"image_url": {
"url": ""
}
}
]
},
{
"role": "assistant",
"name": "Bob",
"content": [
{
"type": "text",
"text": "Sure!"
}
]
}
]
print("\nDashscope prompt:")
dashscope_prompt = DashScopeFormatter.format_chat(multi_modal_messages)
print(json.dumps(dashscope_prompt, indent=4, ensure_ascii=False))
Dashscope prompt:
[
{
"role": "system",
"content": [
{
"text": "You're a helpful assistant named Alice."
}
]
},
{
"role": "user",
"content": [
{
"text": "Help me to describe the two images?"
},
{
"image": "https://example.com/image.jpg"
},
{
"image": "./image.jpg"
}
]
},
{
"role": "assistant",
"content": [
{
"text": "Sure!"
}
]
}
]
print("\nAnthropic prompt:")
anthropic_prompt = AnthropicFormatter.format_chat(multi_modal_messages)
print(json.dumps(anthropic_prompt, indent=4, ensure_ascii=False))
Anthropic prompt:
[
{
"role": "system",
"content": [
{
"type": "text",
"text": "You're a helpful assistant named Alice."
}
]
},
{
"role": "user",
"content": [
{
"type": "text",
"text": "Help me to describe the two images?"
},
{
"type": "image",
"source": "https://example.com/image.jpg"
},
{
"type": "image",
"source": {
"type": "base64",
"media_type": "image/jpeg",
"data": ""
}
}
]
},
{
"role": "assistant",
"content": [
{
"type": "text",
"text": "Sure!"
}
]
}
]
Total running time of the script: (0 minutes 1.535 seconds)