Note
Go to the end to download the full example code.
Prompt Formatting
AgentScope supports developers to build prompt that fits different model APIs by providing a set of built-in strategies for both chat and multi-agent scenarios.
Specifically, AgentScope supports both model-specific and model-agnostic formatting.
Tip
Chat scenario refers to the conversation between a user and an assistant, while multi-agent scenario involves multiple agents with different names (though their roles are all “assistant”).
Note
Currently, most LLM API providers only support chat scenario. For example, only two roles (user and assistant) are involved in the conversation and sometimes they must speak alternatively.
Note
There is no one-size-fits-all solution for prompt formatting. The goal of built-in strategies is to enable beginners to smoothly invoke the model API, rather than achieving the best performance. For advanced users, we highly recommend developers to customize prompts according to their needs and model API requirements.
Model-Agnostic Formatting
When you want your application to work with different model APIs simultaneously, the model-agnostic formatting is a good idea.
AgentScope achieves model-agnostic formatting by supporting to load the model from configuration, and presets a collection of built-in formatting strategies for different model APIs and scenarios (chat or multi-agent) in the model wrapper class.
You can directly use the format method of the model object to format the input messages without knowing the details of the model API. Taking DashScope Chat API as an example:
from typing import Union, Optional
from agentscope.agents import AgentBase
from agentscope.message import Msg
from agentscope.manager import ModelManager
import agentscope
import json
# Load the model configuration
agentscope.init(
model_configs={
"config_name": "my_qwen",
"model_type": "dashscope_chat",
"model_name": "qwen-max",
},
)
# Get the model object from model manager
model = ModelManager.get_instance().get_model_by_config_name("my_qwen")
# `Msg` objects or a list of `Msg` objects can be passed to the `format` method
prompt = model.format(
Msg("system", "You're a helpful assistant.", "system"),
[
Msg("assistant", "Hi!", "assistant"),
Msg("user", "Nice to meet you!", "user"),
],
multi_agent_mode=False,
)
print(json.dumps(prompt, indent=4, ensure_ascii=False))
[
{
"role": "system",
"content": "You're a helpful assistant."
},
{
"role": "assistant",
"content": "Hi!"
},
{
"role": "user",
"content": "Nice to meet you!"
}
]
After formatting the input messages, we can input the prompt into the model object.
response = model(prompt)
print(response.text)
Nice to meet you too! How can I assist you today?
Also, you can use format the messages in the multi-agent scenario by setting multi_agent_mode=True.
prompt = model.format(
Msg("system", "You're a helpful assistant named Alice.", "system"),
[
Msg("Alice", "Hi!", "assistant"),
Msg("Bob", "Nice to meet you!", "assistant"),
],
multi_agent_mode=True,
)
print(json.dumps(prompt, indent=4, ensure_ascii=False))
[
{
"role": "system",
"content": "You're a helpful assistant named Alice."
},
{
"role": "user",
"content": "## Conversation History\nAlice: Hi!\nBob: Nice to meet you!"
}
]
Within the agent, the model-agnostic formatting is achieved as follows:
class MyAgent(AgentBase):
def __init__(self, name: str, model_config_name: str, **kwargs) -> None:
super().__init__(name=name, model_config_name=model_config_name)
# ...
def reply(self, x: Optional[Union[Msg, list[Msg]]] = None) -> Msg:
# ...
# Format the messages without knowing the model API
prompt = self.model.format(
Msg("system", "{your system prompt}", "system"),
self.memory.get_memory(),
multi_agent_mode=True,
)
response = self.model(prompt)
# ...
return Msg(self.name, response.text, role="assistant")
Tip
All the formatting strategies are implemented under
agentscope.formatter module. The model wrapper decides which strategy to use based on the model name.
Model-Specific Formatting
The agentscope.formatter module implements the built-in formatting strategies for different model APIs and scenarios. They provide format_chat and format_multi_agent methods, as well as a format_auto function that automatically selects the appropriate method based on the input messages.
from agentscope.formatters import OpenAIFormatter
multi_agent_messages = [
Msg("system", "You're a helpful assistant named Alice.", "system"),
Msg("Alice", "Hi!", "assistant"),
Msg("Bob", "Nice to meet you!", "assistant"),
Msg("Charlie", "Nice to meet you, too!", "user"),
]
chat_messages = [
Msg("system", "You're a helpful assistant named Alice.", "system"),
Msg("Bob", "Nice to meet you!", "user"),
Msg("Alice", "Hi! How can I help you?", "assistant"),
]
Multi-agent scenario:
formatted_multi_agent = OpenAIFormatter.format_multi_agent(
multi_agent_messages,
)
print(json.dumps(formatted_multi_agent, indent=4, ensure_ascii=False))
[
{
"role": "system",
"name": "system",
"content": [
{
"type": "text",
"text": "You're a helpful assistant named Alice."
}
]
},
{
"role": "assistant",
"name": "Alice",
"content": [
{
"type": "text",
"text": "Hi!"
}
]
},
{
"role": "assistant",
"name": "Bob",
"content": [
{
"type": "text",
"text": "Nice to meet you!"
}
]
},
{
"role": "user",
"name": "Charlie",
"content": [
{
"type": "text",
"text": "Nice to meet you, too!"
}
]
}
]
Chat scenario:
formatted_chat = OpenAIFormatter.format_chat(
chat_messages,
)
print(json.dumps(formatted_chat, indent=4, ensure_ascii=False))
[
{
"role": "system",
"name": "system",
"content": [
{
"type": "text",
"text": "You're a helpful assistant named Alice."
}
]
},
{
"role": "user",
"name": "Bob",
"content": [
{
"type": "text",
"text": "Nice to meet you!"
}
]
},
{
"role": "assistant",
"name": "Alice",
"content": [
{
"type": "text",
"text": "Hi! How can I help you?"
}
]
}
]
Auto formatting when only two entities are involved:
formatted_auto_chat = OpenAIFormatter.format_auto(
chat_messages,
)
print(json.dumps(formatted_auto_chat, indent=4, ensure_ascii=False))
[
{
"role": "system",
"name": "system",
"content": [
{
"type": "text",
"text": "You're a helpful assistant named Alice."
}
]
},
{
"role": "user",
"name": "Bob",
"content": [
{
"type": "text",
"text": "Nice to meet you!"
}
]
},
{
"role": "assistant",
"name": "Alice",
"content": [
{
"type": "text",
"text": "Hi! How can I help you?"
}
]
}
]
Auto formatting when more than two entities (multi-agent) are involved:
formatted_auto_multi_agent = OpenAIFormatter.format_auto(
multi_agent_messages,
)
print(json.dumps(formatted_auto_multi_agent, indent=4, ensure_ascii=False))
[
{
"role": "system",
"name": "system",
"content": [
{
"type": "text",
"text": "You're a helpful assistant named Alice."
}
]
},
{
"role": "assistant",
"name": "Alice",
"content": [
{
"type": "text",
"text": "Hi!"
}
]
},
{
"role": "assistant",
"name": "Bob",
"content": [
{
"type": "text",
"text": "Nice to meet you!"
}
]
},
{
"role": "user",
"name": "Charlie",
"content": [
{
"type": "text",
"text": "Nice to meet you, too!"
}
]
}
]
The available formatter classes are:
from agentscope.formatters import (
CommonFormatter,
AnthropicFormatter,
OpenAIFormatter,
GeminiFormatter,
DashScopeFormatter,
)
The CommonFormatter is a basic formatter for common chat LLMs, such as ZhipuAI API, Yi API, ollama, LiteLLM, etc.
Vision Models
For vision models, AgentScope currently supports OpenAI, DashScope and Anthropic vision models.
from agentscope.message import TextBlock, ImageBlock
# we create a fake image locally
with open("./image.jpg", "w") as f:
f.write("fake image")
multi_modal_messages = [
Msg("system", "You're a helpful assistant named Alice.", "system"),
Msg(
"Alice",
[
TextBlock(type="text", text="Help me to describe the two images?"),
ImageBlock(type="image", url="https://example.com/image.jpg"),
ImageBlock(type="image", url="./image.jpg"),
],
"user",
),
Msg("Bob", "Sure!", "assistant"),
]
print("OpenAI prompt:")
openai_prompt = OpenAIFormatter.format_chat(multi_modal_messages)
print(json.dumps(openai_prompt, indent=4, ensure_ascii=False))
OpenAI prompt:
[
{
"role": "system",
"name": "system",
"content": [
{
"type": "text",
"text": "You're a helpful assistant named Alice."
}
]
},
{
"role": "user",
"name": "Alice",
"content": [
{
"type": "text",
"text": "Help me to describe the two images?"
},
{
"type": "image_url",
"image_url": {
"url": "https://example.com/image.jpg"
}
},
{
"type": "image_url",
"image_url": {
"url": ""
}
}
]
},
{
"role": "assistant",
"name": "Bob",
"content": [
{
"type": "text",
"text": "Sure!"
}
]
}
]
print("\nDashscope prompt:")
dashscope_prompt = DashScopeFormatter.format_chat(multi_modal_messages)
print(json.dumps(dashscope_prompt, indent=4, ensure_ascii=False))
Dashscope prompt:
[
{
"role": "system",
"content": [
{
"text": "You're a helpful assistant named Alice."
}
]
},
{
"role": "user",
"content": [
{
"text": "Help me to describe the two images?"
},
{
"image": "https://example.com/image.jpg"
},
{
"image": "./image.jpg"
}
]
},
{
"role": "assistant",
"content": [
{
"text": "Sure!"
}
]
}
]
print("\nAnthropic prompt:")
anthropic_prompt = AnthropicFormatter.format_chat(multi_modal_messages)
print(json.dumps(anthropic_prompt, indent=4, ensure_ascii=False))
Anthropic prompt:
[
{
"role": "system",
"content": [
{
"type": "text",
"text": "You're a helpful assistant named Alice."
}
]
},
{
"role": "user",
"content": [
{
"type": "text",
"text": "Help me to describe the two images?"
},
{
"type": "image",
"source": "https://example.com/image.jpg"
},
{
"type": "image",
"source": {
"type": "base64",
"media_type": "image/jpeg",
"data": ""
}
}
]
},
{
"role": "assistant",
"content": [
{
"type": "text",
"text": "Sure!"
}
]
}
]
Total running time of the script: (0 minutes 1.963 seconds)