Source code for agentscope.pipelines.pipeline

# -*- coding: utf-8 -*-
""" Base class for Pipeline """

from typing import Callable, Sequence
from typing import Any
from typing import List
from typing import Mapping
from typing import Optional
from abc import abstractmethod

from .functional import (
    Operators,
    placeholder,
    sequentialpipeline,
    ifelsepipeline,
    switchpipeline,
    forlooppipeline,
    whilelooppipeline,
)
from ..agents.operator import Operator


[docs] class PipelineBase(Operator): r"""Base interface of all pipelines. The pipeline is a special kind of operator that includes multiple operators and the interaction logic among them. """ def __init__(self) -> None: self.participants: List[Any] = [] @abstractmethod def __call__(self, x: Optional[dict] = None) -> dict: """Define the actions taken by this pipeline. Args: x (Optional[`dict`], optional): Dialog history and some environment information Returns: `dict`: The pipeline's response to the input. """
[docs] class IfElsePipeline(PipelineBase): r"""A template pipeline for implementing control flow like if-else. IfElsePipeline(condition_func, if_body_operators, else_body_operators) represents the following workflow:: if condition_func(x): if_body_operators(x) else: else_body_operators(x) """ def __init__( self, condition_func: Callable[[dict], bool], if_body_operators: Operators, else_body_operators: Operators = placeholder, ) -> None: r"""Initialize an IfElsePipeline. Args: condition_func (`Callable[[dict], bool]`): A function that determines whether to execute if_body_operators or else_body_operators based on the input x. if_body_operators (`Operators`): Operators executed when condition_func returns True. else_body_operators (`Operators`): Operators executed when condition_func returns False, does nothing and just return the input by default. """ self.condition_func = condition_func self.if_body_operator = if_body_operators self.else_body_operator = else_body_operators self.participants = [self.if_body_operator] + [self.else_body_operator] def __call__(self, x: Optional[dict] = None) -> dict: return ifelsepipeline( condition_func=self.condition_func, if_body_operators=self.if_body_operator, else_body_operators=self.else_body_operator, x=x, )
[docs] class SwitchPipeline(PipelineBase): r"""A template pipeline for implementing control flow like switch-case. SwitchPipeline(condition_func, case_operators, default_operators) represents the following workflow:: switch condition_func(x): case k1: return case_operators[k1](x) case k2: return case_operators[k2](x) ... default: return default_operators(x) """ def __init__( self, condition_func: Callable[[dict], Any], case_operators: Mapping[Any, Operators], default_operators: Operators = placeholder, ) -> None: """Initialize a SwitchPipeline. Args: condition_func (`Callable[[dict], Any]`): A function that determines which case_operator to execute based on the input x. case_operators (`dict[Any, Operators]`): A dictionary containing multiple operators and their corresponding trigger conditions. default_operators (`Operators`, defaults to `placeholder`): Operators that are executed when the actual condition do not meet any of the case_operators, does nothing and just return the input by default. """ self.condition_func = condition_func self.case_operators = case_operators self.default_operators = default_operators self.participants = list(self.case_operators.values()) + [ self.default_operators, ] def __call__(self, x: Optional[dict] = None) -> dict: return switchpipeline( condition_func=self.condition_func, case_operators=self.case_operators, default_operators=self.default_operators, x=x, )
[docs] class ForLoopPipeline(PipelineBase): r"""A template pipeline for implementing control flow like for-loop ForLoopPipeline(loop_body_operators, max_loop) represents the following workflow:: for i in range(max_loop): x = loop_body_operators(x) ForLoopPipeline(loop_body_operators, max_loop, break_func) represents the following workflow:: for i in range(max_loop): x = loop_body_operators(x) if break_func(x): break """ def __init__( self, loop_body_operators: Operators, max_loop: int, break_func: Callable[[dict], bool] = lambda _: False, ): r"""Initialize a ForLoopPipeline. Args: loop_body_operators (`Operators`): Operators executed as the body of the loop. max_loop (`int`): Maximum number of loop executions. break_func (`Callable[[dict], bool]`, defaults to `lambda _: False`): A function used to determine whether to break out of the loop based on the output of the loop_body_operators. """ self.loop_body_operators = loop_body_operators self.max_loop = max_loop self.break_func = break_func self.participants = [self.loop_body_operators] def __call__(self, x: Optional[dict] = None) -> dict: return forlooppipeline( loop_body_operators=self.loop_body_operators, max_loop=self.max_loop, break_func=self.break_func, x=x, )
[docs] class WhileLoopPipeline(PipelineBase): r"""A template pipeline for implementing control flow like while-loop WhileLoopPipeline(loop_body_operators, condition_operator, condition_func) represents the following workflow:: i = 0 while (condition_func(i, x)) x = loop_body_operators(x) i += 1 """ def __init__( self, loop_body_operators: Operators, condition_func: Callable[[int, dict], bool] = lambda _, __: False, ): """Initialize a WhileLoopPipeline. Args: loop_body_operators (`Operators`): Operators executed as the body of the loop. condition_func (`Callable[[int, dict], bool]`, defaults to `lambda _, __: False`): A function that determines whether to continue executing the loop body based on the current loop number and output of the `loop_body_operator` """ self.condition_func = condition_func self.loop_body_operators = loop_body_operators self.participants = [self.loop_body_operators] def __call__(self, x: Optional[dict] = None) -> dict: return whilelooppipeline( loop_body_operators=self.loop_body_operators, condition_func=self.condition_func, x=x, )
[docs] class SequentialPipeline(PipelineBase): r"""A template pipeline for implementing sequential logic. Sequential(operators) represents the following workflow:: x = operators[0](x) x = operators[1](x) ... x = operators[n](x) """ def __init__(self, operators: Sequence[Operator]) -> None: r"""Initialize a Sequential pipeline. Args: operators (`Sequence[Operator]`): A Sequence of operators to be executed sequentially. """ self.operators = operators self.participants = list(self.operators) def __call__(self, x: Optional[dict] = None) -> dict: return sequentialpipeline(operators=self.operators, x=x)