# -*- coding: utf-8 -*-
"""Service Toolkit for service function usage."""
import json
from functools import partial
import inspect
from typing import (
Callable,
Any,
Tuple,
Union,
Optional,
Literal,
get_args,
get_origin,
List,
)
from loguru import logger
from ..exception import (
JsonParsingError,
FunctionNotFoundError,
FunctionCallFormatError,
FunctionCallError,
)
from .service_response import ServiceResponse
from .service_response import ServiceExecStatus
from ..message import Msg
try:
from docstring_parser import parse
except ImportError:
parse = None
def _get_type_str(cls: Any) -> Optional[Union[str, list]]:
"""Get the type string."""
type_str = None
if hasattr(cls, "__origin__"):
# Typing class
if cls.__origin__ is Union:
type_str = [_get_type_str(_) for _ in get_args(cls)]
clean_type_str = [_ for _ in type_str if _ != "null"]
if len(clean_type_str) == 1:
type_str = clean_type_str[0]
elif cls.__origin__ in [list, tuple]:
type_str = "array"
else:
type_str = str(cls.__origin__)
else:
# Normal class
if cls is str:
type_str = "string"
elif cls in [float, int, complex]:
type_str = "number"
elif cls is bool:
type_str = "boolean"
elif cls in [list, tuple]:
type_str = "array"
elif cls is None.__class__:
type_str = "null"
elif cls is Any:
type_str = "Any"
else:
type_str = cls.__name__
return type_str # type: ignore[return-value]
[docs]
class ServiceFunction:
"""The service function class."""
name: str
"""The name of the service function."""
original_func: Callable
"""The original function before processing."""
processed_func: Callable
"""The processed function that can be called by the model directly."""
json_schema: dict
"""The JSON schema description of the service function."""
require_args: bool
"""Whether calling the service function requests arguments. Some arguments
may have default values, so it is not necessary to provide all arguments.
"""
def __init__(
self,
name: str,
original_func: Callable,
processed_func: Callable,
json_schema: dict,
) -> None:
"""Initialize the service function object."""
self.name = name
self.original_func = original_func
self.processed_func = processed_func
self.json_schema = json_schema
self.require_args = (
len(
json_schema["function"]
.get("parameters", {})
.get("required", []),
)
!= 0
)
[docs]
class ServiceToolkit:
"""A service toolkit class that turns service function into string
prompt format."""
service_funcs: dict[str, ServiceFunction]
"""The registered functions in the service toolkit."""
_tools_instruction_format: str = (
"## Tool Functions:\n"
"The following tool functions are available in the format of\n"
"```\n"
"{{index}}. {{function name}}: {{function description}}\n"
"{{argument1 name}} ({{argument type}}): {{argument description}}\n"
"{{argument2 name}} ({{argument type}}): {{argument description}}\n"
"...\n"
"```\n\n"
"{function_prompt}\n"
)
"""The instruction template for the tool functions."""
_tools_calling_format: str = (
'[{"name": "{function name}", "arguments": {"{argument1 name}": xxx,'
' "{argument2 name}": xxx}}]'
)
"""The format of the tool function call."""
_tools_execution_format: str = (
"{index}. Execute function {function_name}\n"
" [ARGUMENTS]:\n"
" {arguments}\n"
" [STATUS]: {status}\n"
" [RESULT]: {result}\n"
)
"""The prompt template for the execution results."""
def __init__(self) -> None:
"""Initialize the service toolkit with a list of service functions."""
self.service_funcs = {}
@property
def json_schemas(self) -> dict:
"""The json schema descriptions of the processed service funcs."""
return {k: v.json_schema for k, v in self.service_funcs.items()}
@property
def tools_calling_format(self) -> str:
"""The calling format of the tool functions."""
return self._tools_calling_format
@property
def tools_instruction(self) -> str:
"""The instruction of the tool functions."""
tools_prompt = []
for i, (func_name, desc) in enumerate(self.json_schemas.items()):
func_desc = desc["function"]["description"]
args_desc = desc["function"]["parameters"]["properties"]
args_list = [f"{i + 1}. {func_name}: {func_desc}"]
for args_name, args_info in args_desc.items():
if "type" in args_info:
args_line = (
f'\t{args_name} ({args_info["type"]}): '
f'{args_info.get("description", "")}'
)
else:
args_line = (
f'\t{args_name}: {args_info.get("description", "")}'
)
args_list.append(args_line)
func_prompt = "\n".join(args_list)
tools_prompt.append(func_prompt)
tools_description = "\n".join(tools_prompt)
if tools_description == "":
# No tools are provided
return ""
else:
return self._tools_instruction_format.format_map(
{"function_prompt": tools_description},
)
def _parse_and_check_text( # pylint: disable=too-many-branches
self,
cmd: Union[list[dict], str],
) -> List[dict]:
"""Parsing and check the format of the function calling text."""
# Record the error
error_info = []
if isinstance(cmd, str):
# --- Syntax check: if the input can be loaded by JSON
try:
processed_text = cmd.strip()
# complete "[" and "]" if they are missing
index_start = processed_text.find("[")
index_end = processed_text.rfind("]")
if index_start == -1:
index_start = 0
error_info.append('Missing "[" at the beginning.')
if index_end == -1:
index_end = len(processed_text)
error_info.append('Missing "]" at the end.')
# remove the unnecessary prefix before "[" and suffix after "]"
processed_text = processed_text[
index_start : index_end + 1 # noqa: E203
]
cmds = json.loads(processed_text)
except json.JSONDecodeError:
# Since we have processed the text, here we can only report
# the JSON parsing error
raise JsonParsingError(
f"Except a list of dictionaries in JSON format, "
f"like: {self.tools_calling_format}",
) from None
else:
cmds = cmd
# --- Semantic Check: if the input is a list of dicts with
# required fields
# Handle the case when the input is a single dictionary
if isinstance(cmds, dict):
# The error info is already recorded in error_info
cmds = [cmds]
if not isinstance(cmds, list):
# Not list, raise parsing error
raise JsonParsingError(
f"Except a list of dictionaries in JSON format "
f"like: {self.tools_calling_format}",
)
# --- Check the format of the command ---
for sub_cmd in cmds:
if not isinstance(sub_cmd, dict):
raise JsonParsingError(
f"Except a JSON list of dictionaries, but got"
f" {type(sub_cmd)} instead.",
)
if "name" not in sub_cmd:
raise FunctionCallFormatError(
"The field 'name' is required in the dictionary.",
)
# Obtain the service function
func_name = sub_cmd["name"]
# Cannot find the service function
if func_name not in self.service_funcs:
raise FunctionNotFoundError(
f"Cannot find a tool function named `{func_name}`.",
)
# If it is json(str) convert to json(dict)
if isinstance(sub_cmd["arguments"], str):
try:
sub_cmd["arguments"] = json.loads(sub_cmd["arguments"])
except json.decoder.JSONDecodeError:
logger.debug(
f"Fail to parse the argument: {sub_cmd['arguments']}",
)
# Type error for the arguments
if not isinstance(sub_cmd["arguments"], dict):
raise FunctionCallFormatError(
"Except a dictionary for the arguments, but got "
f"{type(sub_cmd['arguments'])} instead.",
)
# Leaving the type checking and required checking to the runtime
# error reporting during execution
return cmds
def _execute_func(self, cmds: List[dict]) -> str:
"""Execute the function with the arguments.
Args:
cmds (`List[dict]`):
A list of dictionaries, where each dictionary contains the
name of the function and its arguments, e.g. {"name": "func1",
"arguments": {"arg1": 1, "arg2": 2}}.
Returns:
`str`: The prompt of the execution results.
"""
execute_results = []
for i, cmd in enumerate(cmds):
service_func = self.service_funcs[cmd["name"]]
kwargs = cmd.get("arguments", {})
# Execute the function
try:
func_res = service_func.processed_func(**kwargs)
except Exception as e:
func_res = ServiceResponse(
status=ServiceExecStatus.ERROR,
content=str(e),
)
status = (
"SUCCESS"
if func_res.status == ServiceExecStatus.SUCCESS
else "FAILED"
)
arguments = [f"{k}: {v}" for k, v in kwargs.items()]
execute_res = self._tools_execution_format.format_map(
{
"index": i + 1,
"function_name": cmd["name"],
"arguments": "\n\t\t".join(arguments),
"status": status,
"result": func_res.content,
},
)
execute_results.append(execute_res)
execute_results_prompt = "\n".join(execute_results)
return execute_results_prompt
[docs]
@classmethod
def get(
cls,
service_func: Callable[..., Any],
**kwargs: Any,
) -> Tuple[Callable[..., Any], dict]:
"""Convert a service function into a tool function that agent can
use, and generate a dictionary in JSON Schema format that can be
used in OpenAI API directly. While for open-source model, developers
should handle the conversation from json dictionary to prompt.
Args:
service_func (`Callable[..., Any]`):
The service function to be called.
kwargs (`Any`):
The arguments to be passed to the service function.
Returns:
`Tuple(Callable[..., Any], dict)`: A tuple of tool function and
a dict in JSON Schema format to describe the function.
Note:
The description of the function and arguments are extracted from
its docstring automatically, which should be well-formatted in
**Google style**. Otherwise, their descriptions in the returned
dictionary will be empty.
Suggestions:
1. The name of the service function should be self-explanatory,
so that the agent can understand the function and use it properly.
2. The typing of the arguments should be provided when defining
the function (e.g. `def func(a: int, b: str, c: bool)`), so that
the agent can specify the arguments properly.
Example:
.. code-block:: python
def bing_search(query: str, api_key: str, num_results: int=10):
'''Search the query in Bing search engine.
Args:
query (str):
The string query to search.
api_key (str):
The API key for Bing search.
num_results (int):
The number of results to return, default to 10.
'''
pass
"""
# Get the function for agent to use
tool_func = partial(service_func, **kwargs)
# Obtain all arguments of the service function
argsspec = inspect.getfullargspec(service_func)
# Construct the mapping from arguments to their typings
if parse is None:
raise ImportError(
"Missing required package `docstring_parser`"
"Please install it by "
"`pip install docstring_parser`.",
)
docstring = parse(service_func.__doc__)
# Function description
short_description = docstring.short_description or ""
long_description = docstring.long_description or ""
func_description = "\n\n".join([short_description, long_description])
# The arguments that requires the agent to specify
# to support class method, the self args are deprecated
args_agent = set(argsspec.args) - set(kwargs.keys()) - {"self", "cls"}
# Check if the arguments from agent have descriptions in docstring
args_description = {
_.arg_name: _.description for _ in docstring.params
}
# Prepare default values
if argsspec.defaults is None:
args_defaults = {}
else:
args_defaults = dict(
zip(
reversed(argsspec.args),
reversed(argsspec.defaults), # type: ignore
),
)
args_required = sorted(
list(set(args_agent) - set(args_defaults.keys())),
)
# Prepare types of the arguments, remove the return type
args_types = {
k: v for k, v in argsspec.annotations.items() if k != "return"
}
# Prepare argument dictionary
properties_field = {}
for key in args_agent:
arg_property = {}
# type
if key in args_types:
try:
required_type = _get_type_str(args_types[key])
arg_property["type"] = required_type
except Exception:
logger.warning(
f"Fail and skip to get the type of the "
f"argument `{key}`.",
)
# For Literal type, add enum field
if get_origin(args_types[key]) is Literal:
arg_property["enum"] = list(args_types[key].__args__)
# description
if key in args_description:
arg_property["description"] = args_description[key]
# default
if key in args_defaults and args_defaults[key] is not None:
arg_property["default"] = args_defaults[key]
properties_field[key] = arg_property
# Construct the JSON Schema for the service function
func_dict = {
"type": "function",
"function": {
"name": service_func.__name__,
"description": func_description.strip(),
"parameters": {
"type": "object",
"properties": properties_field,
"required": args_required,
},
},
}
return tool_func, func_dict
class ServiceFactory:
"""A service factory class that turns service function into string
prompt format."""
@classmethod
def get(
cls,
service_func: Callable[..., Any],
**kwargs: Any,
) -> Tuple[Callable[..., Any], dict]:
"""Convert a service function into a tool function that agent can
use, and generate a dictionary in JSON Schema format that can be
used in OpenAI API directly. While for open-source model, developers
should handle the conversation from json dictionary to prompt.
Args:
service_func (`Callable[..., Any]`):
The service function to be called.
kwargs (`Any`):
The arguments to be passed to the service function.
Returns:
`Tuple(Callable[..., Any], dict)`: A tuple of tool function and
a dict in JSON Schema format to describe the function.
Note:
The description of the function and arguments are extracted from
its docstring automatically, which should be well-formatted in
**Google style**. Otherwise, their descriptions in the returned
dictionary will be empty.
Suggestions:
1. The name of the service function should be self-explanatory,
so that the agent can understand the function and use it properly.
2. The typing of the arguments should be provided when defining
the function (e.g. `def func(a: int, b: str, c: bool)`), so that
the agent can specify the arguments properly.
Example:
.. code-block:: python
def bing_search(query: str, api_key: str, num_results: int=10):
'''Search the query in Bing search engine.
Args:
query (str):
The string query to search.
api_key (str):
The API key for Bing search.
num_results (int):
The number of results to return, default to 10.
'''
pass
"""
logger.warning(
"The service factory will be deprecated in the future."
" Try to use the `ServiceToolkit` class instead.",
)
# Get the function for agent to use
tool_func = partial(service_func, **kwargs)
# Obtain all arguments of the service function
argsspec = inspect.getfullargspec(service_func)
# Construct the mapping from arguments to their typings
if parse is None:
raise ImportError(
"Missing required package `docstring_parser`"
"Please install it by "
"`pip install docstring_parser`.",
)
docstring = parse(service_func.__doc__)
# Function description
short_description = docstring.short_description or ""
long_description = docstring.long_description or ""
func_description = "\n".join([short_description, long_description])
# The arguments that requires the agent to specify
# we remove the self argument, for class methods
args_agent = set(argsspec.args) - set(kwargs.keys()) - {"self", "cls"}
# Check if the arguments from agent have descriptions in docstring
args_description = {
_.arg_name: _.description for _ in docstring.params
}
# Prepare default values
if argsspec.defaults is None:
args_defaults = {}
else:
args_defaults = dict(
zip(
reversed(argsspec.args),
reversed(argsspec.defaults), # type: ignore
),
)
args_required = sorted(
list(set(args_agent) - set(args_defaults.keys())),
)
# Prepare types of the arguments, remove the return type
args_types = {
k: v for k, v in argsspec.annotations.items() if k != "return"
}
# Prepare argument dictionary
properties_field = {}
for key in args_agent:
arg_property = {}
# type
if key in args_types:
try:
required_type = _get_type_str(args_types[key])
arg_property["type"] = required_type
except Exception:
logger.warning(
f"Fail and skip to get the type of the "
f"argument `{key}`.",
)
# For Literal type, add enum field
if get_origin(args_types[key]) is Literal:
arg_property["enum"] = list(args_types[key].__args__)
# description
if key in args_description:
arg_property["description"] = args_description[key]
# default
if key in args_defaults and args_defaults[key] is not None:
arg_property["default"] = args_defaults[key]
properties_field[key] = arg_property
# Construct the JSON Schema for the service function
func_dict = {
"type": "function",
"function": {
"name": service_func.__name__,
"description": func_description,
"parameters": {
"type": "object",
"properties": properties_field,
"required": args_required,
},
},
}
return tool_func, func_dict