agentscope.models.ollama_model module

Model wrapper for Ollama models.

class OllamaChatWrapper(config_name: str, model_name: str, stream: bool = False, options: dict | None = None, keep_alive: str = '5m', host: str | None = None, **kwargs: Any)[source]

Bases: OllamaWrapperBase

The model wrapper for Ollama chat API.

Response:
  • Refer to

https://github.com/ollama/ollama/blob/main/docs/api.md#generate-a-chat-completion

{
    "model": "registry.ollama.ai/library/llama3:latest",
    "created_at": "2023-12-12T14:13:43.416799Z",
    "message": {
        "role": "assistant",
        "content": "Hello! How are you today?"
    },
    "done": true,
    "total_duration": 5191566416,
    "load_duration": 2154458,
    "prompt_eval_count": 26,
    "prompt_eval_duration": 383809000,
    "eval_count": 298,
    "eval_duration": 4799921000
}
format(*args: Msg | Sequence[Msg]) List[dict][source]

Format the messages for ollama Chat API.

All messages will be formatted into a single system message with system prompt and conversation history.

Note: 1. This strategy maybe not suitable for all scenarios, and developers are encouraged to implement their own prompt engineering strategies. 2. For ollama chat api, the content field shouldn’t be empty string.

Example:

prompt = model.format(
    Msg("system", "You're a helpful assistant", role="system"),
    Msg("Bob", "Hi, how can I help you?", role="assistant"),
    Msg("user", "What's the date today?", role="user")
)

The prompt will be as follows:

[
    {
        "role": "system",
        "content": "You're a helpful assistant"
    },
    {
        "role": "user",
        "content": (
            "## Conversation History\n"
            "Bob: Hi, how can I help you?\n"
            "user: What's the date today?"
        )
    }
]
Parameters:

args (Union[Msg, Sequence[Msg]]) – The input arguments to be formatted, where each argument should be a Msg object, or a list of Msg objects. In distribution, placeholder is also allowed.

Returns:

The formatted messages.

Return type:

List[dict]

config_name: str

The name of the model configuration.

keep_alive: str

Controls how long the model will stay loaded into memory following the request.

model_name: str

The model name used in ollama API.

model_type: str = 'ollama_chat'

The type of the model wrapper, which is to identify the model wrapper class in model configuration.

options: dict

A dict contains the options for ollama generation API, e.g. {“temperature”: 0, “seed”: 123}

class OllamaEmbeddingWrapper(config_name: str, model_name: str, options: dict | None = None, keep_alive: str = '5m', host: str | None = None, **kwargs: Any)[source]

Bases: OllamaWrapperBase

The model wrapper for Ollama embedding API.

Response:
  • Refer to

https://github.com/ollama/ollama/blob/main/docs/api.md#generate-embeddings

{
    "model": "all-minilm",
    "embeddings": [[
        0.010071029, -0.0017594862, 0.05007221, 0.04692972,
        0.008599704, 0.105441414, -0.025878139, 0.12958129,
    ]]
}
format(*args: Msg | Sequence[Msg]) List[dict] | str[source]

Format the input messages into the format that the model API required.

config_name: str

The name of the model configuration.

keep_alive: str

Controls how long the model will stay loaded into memory following the request.

model_name: str

The model name used in ollama API.

model_type: str = 'ollama_embedding'

The type of the model wrapper, which is to identify the model wrapper class in model configuration.

options: dict

A dict contains the options for ollama generation API, e.g. {“temperature”: 0, “seed”: 123}

class OllamaGenerationWrapper(config_name: str, model_name: str, options: dict | None = None, keep_alive: str = '5m', host: str | None = None, **kwargs: Any)[source]

Bases: OllamaWrapperBase

The model wrapper for Ollama generation API.

Response:
  • From

https://github.com/ollama/ollama/blob/main/docs/api.md#generate-a-completion

{
    "model": "llama3",
    "created_at": "2023-08-04T19:22:45.499127Z",
    "response": "The sky is blue because it is the color of  sky.",
    "done": true,
    "context": [1, 2, 3],
    "total_duration": 5043500667,
    "load_duration": 5025959,
    "prompt_eval_count": 26,
    "prompt_eval_duration": 325953000,
    "eval_count": 290,
    "eval_duration": 4709213000
}
format(*args: Msg | Sequence[Msg]) str[source]

Forward the input to the model.

Parameters:

args (Union[Msg, Sequence[Msg]]) – The input arguments to be formatted, where each argument should be a Msg object, or a list of Msg objects. In distribution, placeholder is also allowed.

Returns:

The formatted string prompt.

Return type:

str

config_name: str

The name of the model configuration.

keep_alive: str

Controls how long the model will stay loaded into memory following the request.

model_name: str

The model name used in ollama API.

model_type: str = 'ollama_generate'

The type of the model wrapper, which is to identify the model wrapper class in model configuration.

options: dict

A dict contains the options for ollama generation API, e.g. {“temperature”: 0, “seed”: 123}

class OllamaWrapperBase(config_name: str, model_name: str, options: dict | None = None, keep_alive: str = '5m', host: str | None = None, **kwargs: Any)[source]

Bases: ModelWrapperBase, ABC

The base class for Ollama model wrappers.

To use Ollama API, please 1. First install ollama server from https://ollama.com/download and start the server 2. Pull the model by ollama pull {model_name} in terminal After that, you can use the ollama API.

keep_alive: str

Controls how long the model will stay loaded into memory following the request.

model_name: str

The model name used in ollama API.

model_type: str

The type of the model wrapper, which is to identify the model wrapper class in model configuration.

options: dict

A dict contains the options for ollama generation API, e.g. {“temperature”: 0, “seed”: 123}