Source code for agentscope.models.dashscope_model

# -*- coding: utf-8 -*-
"""Model wrapper for DashScope models"""
import os
from abc import ABC
from http import HTTPStatus
from typing import Any, Union, List, Sequence, Optional, Generator

from loguru import logger

from ..manager import FileManager
from ..message import Msg
from ..utils.common import _convert_to_str, _guess_type_by_extension

try:
    import dashscope

    dashscope_version = dashscope.version.__version__
    if dashscope_version < "1.19.0":
        logger.warning(
            f"You are using 'dashscope' version {dashscope_version}, "
            "which is below the recommended version 1.19.0. "
            "Please consider upgrading to maintain compatibility.",
        )
    from dashscope.api_entities.dashscope_response import GenerationResponse
except ImportError:
    dashscope = None
    GenerationResponse = None

from .model import ModelWrapperBase, ModelResponse


[docs] class DashScopeWrapperBase(ModelWrapperBase, ABC): """The model wrapper for DashScope API."""
[docs] def __init__( self, config_name: str, model_name: str = None, api_key: str = None, generate_args: dict = None, **kwargs: Any, ) -> None: """Initialize the DashScope wrapper. Args: config_name (`str`): The name of the model config. model_name (`str`, default `None`): The name of the model to use in DashScope API. api_key (`str`, default `None`): The API key for DashScope API. generate_args (`dict`, default `None`): The extra keyword arguments used in DashScope api generation, e.g. `temperature`, `seed`. """ if model_name is None: model_name = config_name logger.warning("model_name is not set, use config_name instead.") super().__init__(config_name=config_name, model_name=model_name) if dashscope is None: raise ImportError( "The package 'dashscope' is not installed. Please install it " "by running `pip install dashscope>=1.19.0`", ) self.generate_args = generate_args or {} self.api_key = api_key self.max_length = None
[docs] def format( self, *args: Union[Msg, Sequence[Msg]], ) -> Union[List[dict], str]: raise RuntimeError( f"Model Wrapper [{type(self).__name__}] doesn't " f"need to format the input. Please try to use the " f"model wrapper directly.", )
[docs] class DashScopeChatWrapper(DashScopeWrapperBase): """The model wrapper for DashScope's chat API, refer to https://help.aliyun.com/zh/dashscope/developer-reference/api-details Response: - Refer to https://help.aliyun.com/zh/dashscope/developer-reference/quick-start?spm=a2c4g.11186623.0.0.7e346eb5RvirBw ```json { "status_code": 200, "request_id": "a75a1b22-e512-957d-891b-37db858ae738", "code": "", "message": "", "output": { "text": null, "finish_reason": null, "choices": [ { "finish_reason": "stop", "message": { "role": "assistant", "content": "xxx" } } ] }, "usage": { "input_tokens": 25, "output_tokens": 77, "total_tokens": 102 } } ``` """ model_type: str = "dashscope_chat" deprecated_model_type: str = "tongyi_chat"
[docs] def __init__( self, config_name: str, model_name: str = None, api_key: str = None, stream: bool = False, generate_args: dict = None, **kwargs: Any, ) -> None: """Initialize the DashScope wrapper. Args: config_name (`str`): The name of the model config. model_name (`str`, default `None`): The name of the model to use in DashScope API. api_key (`str`, default `None`): The API key for DashScope API. stream (`bool`, default `False`): If True, the response will be a generator in the `stream` field of the returned `ModelResponse` object. generate_args (`dict`, default `None`): The extra keyword arguments used in DashScope api generation, e.g. `temperature`, `seed`. """ super().__init__( config_name=config_name, model_name=model_name, api_key=api_key, generate_args=generate_args, **kwargs, ) self.stream = stream
def __call__( self, messages: list, stream: Optional[bool] = None, **kwargs: Any, ) -> ModelResponse: """Processes a list of messages to construct a payload for the DashScope API call. It then makes a request to the DashScope API and returns the response. This method also updates monitoring metrics based on the API response. Each message in the 'messages' list can contain text content and optionally an 'image_urls' key. If 'image_urls' is provided, it is expected to be a list of strings representing URLs to images. These URLs will be transformed to a suitable format for the DashScope API, which might involve converting local file paths to data URIs. Args: messages (`list`): A list of messages to process. stream (`Optional[bool]`, default `None`): The stream flag to control the response format, which will overwrite the stream flag in the constructor. **kwargs (`Any`): The keyword arguments to DashScope chat completions API, e.g. `temperature`, `max_tokens`, `top_p`, etc. Please refer to https://help.aliyun.com/zh/dashscope/developer-reference/api-details for more detailed arguments. Returns: `ModelResponse`: A response object with the response text in text field, and the raw response in raw field. If stream is True, the response will be a generator in the `stream` field. Note: `parse_func`, `fault_handler` and `max_retries` are reserved for `_response_parse_decorator` to parse and check the response generated by model wrapper. Their usages are listed as follows: - `parse_func` is a callable function used to parse and check the response generated by the model, which takes the response as input. - `max_retries` is the maximum number of retries when the `parse_func` raise an exception. - `fault_handler` is a callable function which is called when the response generated by the model is invalid after `max_retries` retries. The rule of roles in messages for DashScope is very rigid, for more details, please refer to https://help.aliyun.com/zh/dashscope/developer-reference/api-details """ # step1: prepare keyword arguments kwargs = {**self.generate_args, **kwargs} # step2: checking messages if not isinstance(messages, list): raise ValueError( "Dashscope `messages` field expected type `list`, " f"got `{type(messages)}` instead.", ) if not all("role" in msg and "content" in msg for msg in messages): raise ValueError( "Each message in the 'messages' list must contain a 'role' " "and 'content' key for DashScope API.", ) # step3: forward to generate response if stream is None: stream = self.stream kwargs.update( { "model": self.model_name, "messages": messages, # Set the result to be "message" format. "result_format": "message", "stream": stream, }, ) # Switch to the incremental_output mode if stream: kwargs["incremental_output"] = True response = dashscope.Generation.call(api_key=self.api_key, **kwargs) # step3: invoke llm api, record the invocation and update the monitor if stream: def generator() -> Generator[str, None, None]: last_chunk = None text = "" for chunk in response: if chunk.status_code != HTTPStatus.OK: error_msg = ( f"Request id: {chunk.request_id}\n" f"Status code: {chunk.status_code}\n" f"Error code: {chunk.code}\n" f"Error message: {chunk.message}" ) raise RuntimeError(error_msg) text += chunk.output["choices"][0]["message"]["content"] yield text last_chunk = chunk # Replace the last chunk with the full text last_chunk.output["choices"][0]["message"]["content"] = text # Save the model invocation and update the monitor self._save_model_invocation_and_update_monitor( kwargs, last_chunk, ) return ModelResponse( stream=generator(), raw=response, ) else: if response.status_code != HTTPStatus.OK: error_msg = ( f"Request id: {response.request_id},\n" f"Status code: {response.status_code},\n" f"Error code: {response.code},\n" f"Error message: {response.message}." ) raise RuntimeError(error_msg) # Record the model invocation and update the monitor self._save_model_invocation_and_update_monitor( kwargs, response, ) return ModelResponse( text=response.output["choices"][0]["message"]["content"], raw=response, ) def _save_model_invocation_and_update_monitor( self, kwargs: dict, response: GenerationResponse, ) -> None: """Save the model invocation and update the monitor accordingly. Args: kwargs (`dict`): The keyword arguments to the DashScope chat API. response (`GenerationResponse`): The response object returned by the DashScope chat API. """ input_tokens = response.usage.get("input_tokens", 0) output_tokens = response.usage.get("output_tokens", 0) # Update the token record accordingly self.monitor.update_text_and_embedding_tokens( model_name=self.model_name, prompt_tokens=input_tokens, completion_tokens=output_tokens, ) # Save the model invocation after the stream is exhausted self._save_model_invocation( arguments=kwargs, response=response, )
[docs] def format( self, *args: Union[Msg, Sequence[Msg]], ) -> List[dict]: """A common format strategy for chat models, which will format the input messages into a user message. Note this strategy maybe not suitable for all scenarios, and developers are encouraged to implement their own prompt engineering strategies. The following is an example: .. code-block:: python prompt1 = model.format( Msg("system", "You're a helpful assistant", role="system"), Msg("Bob", "Hi, how can I help you?", role="assistant"), Msg("user", "What's the date today?", role="user") ) prompt2 = model.format( Msg("Bob", "Hi, how can I help you?", role="assistant"), Msg("user", "What's the date today?", role="user") ) The prompt will be as follows: .. code-block:: python # prompt1 [ { "role": "system", "content": "You're a helpful assistant" }, { "role": "user", "content": ( "## Conversation History\\n" "Bob: Hi, how can I help you?\\n" "user: What's the date today?" ) } ] # prompt2 [ { "role": "user", "content": ( "## Conversation History\\n" "Bob: Hi, how can I help you?\\n" "user: What's the date today?" ) } ] Args: args (`Union[Msg, Sequence[Msg]]`): The input arguments to be formatted, where each argument should be a `Msg` object, or a list of `Msg` objects. In distribution, placeholder is also allowed. Returns: `List[dict]`: The formatted messages. """ return ModelWrapperBase.format_for_common_chat_models(*args)
[docs] class DashScopeImageSynthesisWrapper(DashScopeWrapperBase): """The model wrapper for DashScope Image Synthesis API, refer to https://help.aliyun.com/zh/dashscope/developer-reference/quick-start-1 Response: - Refer to https://help.aliyun.com/zh/dashscope/developer-reference/api-details-9?spm=a2c4g.11186623.0.0.7108fa70Op6eqF ```json { "status_code": 200, "request_id": "b54ffeb8-6212-9dac-808c-b3771cba3788", "code": null, "message": "", "output": { "task_id": "996523eb-034d-459b-ac88-b340b95007a4", "task_status": "SUCCEEDED", "results": [ { "url": "RESULT_URL1" }, { "url": "RESULT_URL2" }, ], "task_metrics": { "TOTAL": 2, "SUCCEEDED": 2, "FAILED": 0 } }, "usage": { "image_count": 2 } } ``` """ model_type: str = "dashscope_image_synthesis" def __call__( self, prompt: str, save_local: bool = False, **kwargs: Any, ) -> ModelResponse: """ Args: prompt (`str`): The prompt string to generate images from. save_local: (`bool`, default `False`): Whether to save the generated images locally, and replace the returned image url with the local path. **kwargs (`Any`): The keyword arguments to DashScope Image Synthesis API, e.g. `n`, `size`, etc. Please refer to https://help.aliyun.com/zh/dashscope/developer-reference/api-details-9 for more detailed arguments. Returns: `ModelResponse`: A list of image urls in image_urls field and the raw response in raw field. Note: `parse_func`, `fault_handler` and `max_retries` are reserved for `_response_parse_decorator` to parse and check the response generated by model wrapper. Their usages are listed as follows: - `parse_func` is a callable function used to parse and check the response generated by the model, which takes the response as input. - `max_retries` is the maximum number of retries when the `parse_func` raise an exception. - `fault_handler` is a callable function which is called when the response generated by the model is invalid after `max_retries` retries. """ # step1: prepare keyword arguments kwargs = {**self.generate_args, **kwargs} # step2: forward to generate response response = dashscope.ImageSynthesis.call( model=self.model_name, prompt=prompt, api_key=self.api_key, **kwargs, ) if response.status_code != HTTPStatus.OK: error_msg = ( f" Request id: {response.request_id}," f" Status code: {response.status_code}," f" error code: {response.code}," f" error message: {response.message}." ) raise RuntimeError(error_msg) # step3: record the model api invocation if needed self._save_model_invocation( arguments={ "model": self.model_name, "prompt": prompt, **kwargs, }, response=response, ) # step4: update monitor accordingly self.monitor.update_image_tokens( model_name=self.model_name, image_count=response.usage.image_count, resolution=kwargs.get("size", "1024*1024"), ) # step5: return response images = response.output["results"] # Get image urls as a list urls = [_["url"] for _ in images] if save_local: file_manager = FileManager.get_instance() # Return local url if save_local is True urls = [file_manager.save_image(_) for _ in urls] return ModelResponse(image_urls=urls, raw=response)
[docs] class DashScopeTextEmbeddingWrapper(DashScopeWrapperBase): """The model wrapper for DashScope Text Embedding API. Response: - Refer to https://help.aliyun.com/zh/dashscope/developer-reference/text-embedding-api-details?spm=a2c4g.11186623.0.i3 ```json { "status_code": 200, // 200 indicate success otherwise failed. "request_id": "fd564688-43f7-9595-b986", // The request id. "code": "", // If failed, the error code. "message": "", // If failed, the error message. "output": { "embeddings": [ // embeddings { "embedding": [ // one embedding output -3.8450357913970947, ..., ], "text_index": 0 // the input index. } ] }, "usage": { "total_tokens": 3 // the request tokens. } } ``` """ model_type: str = "dashscope_text_embedding" def __call__( self, texts: Union[list[str], str], **kwargs: Any, ) -> ModelResponse: """Embed the messages with DashScope Text Embedding API. Args: texts (`list[str]` or `str`): The messages used to embed. **kwargs (`Any`): The keyword arguments to DashScope Text Embedding API, e.g. `text_type`. Please refer to https://help.aliyun.com/zh/dashscope/developer-reference/api-details-15 for more detailed arguments. Returns: `ModelResponse`: A list of embeddings in embedding field and the raw response in raw field. Note: `parse_func`, `fault_handler` and `max_retries` are reserved for `_response_parse_decorator` to parse and check the response generated by model wrapper. Their usages are listed as follows: - `parse_func` is a callable function used to parse and check the response generated by the model, which takes the response as input. - `max_retries` is the maximum number of retries when the `parse_func` raise an exception. - `fault_handler` is a callable function which is called when the response generated by the model is invalid after `max_retries` retries. """ # step1: prepare keyword arguments kwargs = {**self.generate_args, **kwargs} # step2: forward to generate response response = dashscope.TextEmbedding.call( input=texts, model=self.model_name, api_key=self.api_key, **kwargs, ) if response.status_code != HTTPStatus.OK: error_msg = ( f" Request id: {response.request_id}," f" Status code: {response.status_code}," f" error code: {response.code}," f" error message: {response.message}." ) raise RuntimeError(error_msg) # step3: record the model api invocation if needed self._save_model_invocation( arguments={ "model": self.model_name, "input": texts, **kwargs, }, response=response, ) # step4: update monitor accordingly self.monitor.update_text_and_embedding_tokens( model_name=self.model_name, prompt_tokens=response.usage.get("total_tokens"), total_tokens=response.usage.get("total_tokens"), ) # step5: return response return ModelResponse( embedding=[_["embedding"] for _ in response.output["embeddings"]], raw=response, )
[docs] class DashScopeMultiModalWrapper(DashScopeWrapperBase): """The model wrapper for DashScope Multimodal API, refer to https://help.aliyun.com/zh/dashscope/developer-reference/tongyi-qianwen-vl-api Response: - Refer to https://help.aliyun.com/zh/dashscope/developer-reference/tongyi-qianwen-vl-plus-api?spm=a2c4g.11186623.0.0.7fde1f5atQSalN ```json { "status_code": 200, "request_id": "a0dc436c-2ee7-93e0-9667-c462009dec4d", "code": "", "message": "", "output": { "text": null, "finish_reason": null, "choices": [ { "finish_reason": "stop", "message": { "role": "assistant", "content": [ { "text": "这张图片显..." } ] } } ] }, "usage": { "input_tokens": 1277, "output_tokens": 81, "image_tokens": 1247 } } ``` """ model_type: str = "dashscope_multimodal" def __call__( self, messages: list, **kwargs: Any, ) -> ModelResponse: """Model call for DashScope MultiModal API. Args: messages (`list`): A list of messages to process. **kwargs (`Any`): The keyword arguments to DashScope MultiModal API, e.g. `stream`. Please refer to https://help.aliyun.com/zh/dashscope/developer-reference/tongyi-qianwen-vl-plus-api for more detailed arguments. Returns: `ModelResponse`: The response text in text field, and the raw response in raw field. Note: If involving image links, then the messages should be of the following form: .. code-block:: python messages = [ { "role": "system", "content": [ {"text": "You are a helpful assistant."}, ], }, { "role": "user", "content": [ {"text": "What does this picture depict?"}, {"image": "http://example.com/image.jpg"}, ], }, ] Therefore, you should input a list matching the content value above. If only involving words, just input them. """ # step1: prepare keyword arguments kwargs = {**self.generate_args, **kwargs} # step2: forward to generate response response = dashscope.MultiModalConversation.call( model=self.model_name, messages=messages, api_key=self.api_key, **kwargs, ) # Unhandled code path here # response could be a generator , if stream is yes # suggest add a check here if response.status_code != HTTPStatus.OK: error_msg = ( f" Request id: {response.request_id}," f" Status code: {response.status_code}," f" error code: {response.code}," f" error message: {response.message}." ) raise RuntimeError(error_msg) # step3: record the model api invocation if needed self._save_model_invocation( arguments={ "model": self.model_name, "messages": messages, **kwargs, }, response=response, ) # step4: update monitor accordingly input_tokens = response.usage.get("input_tokens", 0) image_tokens = response.usage.get("image_tokens", 0) output_tokens = response.usage.get("output_tokens", 0) # TODO: update the tokens self.monitor.update_text_and_embedding_tokens( model_name=self.model_name, prompt_tokens=input_tokens, completion_tokens=output_tokens + image_tokens, ) # step5: return response content = response.output["choices"][0]["message"]["content"] if isinstance(content, list): content = content[0]["text"] return ModelResponse( text=content, raw=response, )
[docs] def format( self, *args: Union[Msg, Sequence[Msg]], ) -> List: """Format the messages for DashScope Multimodal API. The multimodal API has the following requirements: - The roles of messages must alternate between "user" and "assistant". - The message with the role "system" should be the first message in the list. - If the system message exists, then the second message must have the role "user". - The last message in the list should have the role "user". - In each message, more than one figure is allowed. With the above requirements, we format the messages as follows: - If the first message is a system message, then we will keep it as system prompt. - We merge all messages into a conversation history prompt in a single message with the role "user". - When there are multiple figures in the given messages, we will attach it to the user message by order. Note if there are multiple figures, this strategy may cause misunderstanding for the model. For advanced solutions, developers are encouraged to implement their own prompt engineering strategies. The following is an example: .. code-block:: python prompt = model.format( Msg( "system", "You're a helpful assistant", role="system", url="figure1" ), Msg( "Bob", "How about this picture?", role="assistant", url="figure2" ), Msg( "user", "It's wonderful! How about mine?", role="user", image="figure3" ) ) The prompt will be as follows: .. code-block:: python [ { "role": "system", "content": [ {"text": "You are a helpful assistant"}, {"image": "figure1"} ] }, { "role": "user", "content": [ {"image": "figure2"}, {"image": "figure3"}, { "text": ( "## Conversation History\\n" "Bob: How about this picture?\\n" "user: It's wonderful! How about mine?" ) }, ] } ] Note: In multimodal API, the url of local files should be prefixed with "file://", which will be attached in this format function. Args: args (`Union[Msg, Sequence[Msg]]`): The input arguments to be formatted, where each argument should be a `Msg` object, or a list of `Msg` objects. In distribution, placeholder is also allowed. Returns: `List[dict]`: The formatted messages. """ # Parse all information into a list of messages input_msgs = [] for _ in args: if _ is None: continue if isinstance(_, Msg): input_msgs.append(_) elif isinstance(_, list) and all(isinstance(__, Msg) for __ in _): input_msgs.extend(_) else: raise TypeError( f"The input should be a Msg object or a list " f"of Msg objects, got {type(_)}.", ) messages = [] # record dialog history as a list of strings dialogue = [] image_or_audio_dicts = [] for i, unit in enumerate(input_msgs): if i == 0 and unit.role == "system": # system prompt content = self.convert_url(unit.url) content.append({"text": _convert_to_str(unit.content)}) messages.append( { "role": unit.role, "content": content, }, ) else: # text message dialogue.append( f"{unit.name}: {_convert_to_str(unit.content)}", ) # image and audio image_or_audio_dicts.extend(self.convert_url(unit.url)) dialogue_history = "\n".join(dialogue) user_content_template = "## Conversation History\n{dialogue_history}" messages.append( { "role": "user", "content": [ # Place the image or audio before the conversation history *image_or_audio_dicts, { "text": user_content_template.format( dialogue_history=dialogue_history, ), }, ], }, ) return messages
[docs] def convert_url(self, url: Union[str, Sequence[str], None]) -> List[dict]: """Convert the url to the format of DashScope API. Note for local files, a prefix "file://" will be added. Args: url (`Union[str, Sequence[str], None]`): A string of url of a list of urls to be converted. Returns: `List[dict]`: A list of dictionaries with key as the type of the url and value as the url. Only "image" and "audio" are supported. """ if url is None: return [] if isinstance(url, str): url_type = _guess_type_by_extension(url) if url_type in ["audio", "image"]: # Add prefix for local files if os.path.exists(url): url = "file://" + url return [{url_type: url}] else: # skip unsupported url logger.warning( f"Skip unsupported url ({url_type}), " f"expect image or audio.", ) return [] elif isinstance(url, list): dicts = [] for _ in url: dicts.extend(self.convert_url(_)) return dicts else: raise TypeError( f"Unsupported url type {type(url)}, " f"str or list expected.", )